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Abstract

We formulated the initial-boundary-value problem of non-steady electro-
osmotic flow of a micropolar fluid in a rectangular microchannel of height
much larger than the Debye length and length much larger the height. Solving
the governing differential equations numerically when a spatially uniform
electric field is applied as an impulse of finite magnitude, we found that
the effect is instantaneous on the flow, just as for simple Newtonian fluids.
The decay times of the fluid velocity and the microrotation, however, are
smaller in micropolar fluids than in simple Newtonian fluids. The maximum
magnitude of microrotation decreases as the micropolarity increases. The effect
of microrotation on the stress tensor is more dominant than that of the fluid
speed, and a threshold effect with respect to the magnitude of the zeta potential
is evident in the spatial profile of the couple stress tensor. We expect similar
trends even when the applied electric field varies over some finite interval of
time.

PACS numbers: 47.50.−d, 47.57.E−, 47.61.−k

1. Introduction

The flows of many technoscientifically important fluids—such as blood, colloidal suspensions,
liquid crystals and epoxies—cannot be described by a simple Newtonian model. Being a
suspension of rigid/semi-rigid particles that not only translate but also rotate about axes passing
through their centroids, such a fluid not only sustains body forces and the usual (Cauchy) stress
tensor as simple Newtonian fluids do, but also sustains body couples and couple stress tensor.
The stress tensor is asymmetric in such a fluid, unlike in a simple Newtonian fluid. Having six
degrees of freedom—three more than a simple Newtonian fluid—a fluid of this type is called
a micropolar fluid (Ariman et al 1973, Eringen 2001).
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As micropolar fluids of biological provenance are used in pathological laboratories
(Eringen 1973, Turk et al 1973, Misra and Ghosh 2001), and because there is a rapid trend
towards the deployment of labs-on-a-chip (Eijkel and van den Berg 2006, Riehemann et al
2009), we embarked on a program to analyse the electro-osmotic flow of a micropolar fluid in
a rectangular microchannel. A study of electro-osmotic flows is relevant to fluid transport in
biological and chemical instruments (Fluri et al 1996), specifically in channels in microchips
for the analysis of DNA sequences and for drug delivery (Arangoa et al 1999).

In the first step of our program (Siddiqui and Lakhtakia 2009), we focused on steady
flows. An expression for the Helmholtz–Smoluchowski velocity (Probstein 1989, p 192)
of a micropolar fluid in a uniform rectangular microchannel, under the action of a uniform
applied electric field was formulated. Numerical solutions of the relevant boundary-value
problem turned out to be virtually identical to the analytic solutions obtained after using the
Debye–Hückel approximation (Li 2004) when applicable. For a fixed Debye length (Li 2004),
the midchannel fluid speed was found to be linearly proportional to the microchannel height
when the fluid is micropolar, but not when the fluid is simple Newtonian. We also found that
the couple stress decreases midchannel, but the couple stress at the walls intensifies, as the
microchannel height increases and the flow tends towards turbulence.

Our focus has now moved on to non-steady flow of a micropolar fluid in a uniform
rectangular microchannel under the action of a spatially uniform finite-electric-field impulse,
which would trigger a specific activity in a microchip. Following the predecessor paper
(Siddiqui and Lakhtakia 2009), our interest lies in the spatiotemporal variations of the fluid
speed, microrotation, stress tensor and couple stress tensor in the microchannel. We are
also interested in a comparison with the analogous flow of a simple Newtonian fluid in a
microchannel, in order to isolate the effects of micropolarity.

This paper is organized as follows: the formulation of a relevant initial-boundary-value
problem is presented in section 2, while section 3 contains the description of the numerical
approach that we adopted to solve that problem. Section 4 comprises numerical results
obtained and discussions thereon. The main conclusions are summarized in section 5.

2. Basic analysis and formulation

Adopting the notation r′ = x ′x̂′ +y ′ŷ′ +z′ẑ′ for the position vector, where {x̂′, ŷ′, ẑ′} is the triad
of Cartesian unit vectors, we are interested in examining the non-steady flow of a micropolar
fluid in the microchannel |y ′| � h for x ′ ∈ [−w,w], when the length 2w is much greater
than the height 2h of the microchannel, and there is no variation along the z′-axis. The walls
y ′ = ±h are assumed to be perfectly insulating and impermeable. Furthermore, we assume
that (i) neither a pressure gradient nor a body couple is present; (ii) the effect of gravity is
unimportant; (iii) the flow is symmetric as both walls are identical; (iv) a spatially uniform
but time-dependent electric field is applied to the fluid; (v) the Joule heating effects are small
enough to be ignored, and (vi) the micropolar fluid is ionized, incompressible and viscous.

Under these conditions, the three applicable equations of micropolar-fluid flow are as
follows (Eringen 2001):

∇′ · V′(r′, t ′) = 0, (1)

−(μ + χ)∇′ × [∇′ × V′(r′, t ′)] + χ∇′ × v′(r′, t ′) + ρ ′
e(r

′)E′
app(t

′) = ρ
D

Dt ′
V′(r′, t ′), (2)

(α + β + γ )∇′[∇′ · v′(r′, t ′)] − γ∇′ × [∇′ × v′(r′, t ′)] − 2χv′(r′, t ′)

+ χ∇′ × V′(r′, t ′) = ρjo

D

Dt ′
v′(r′, t ′). (3)
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Here, D/Dt ′ is the material derivative; V′, v′ and E′
app are, respectively, the fluid velocity, the

microrotation and the applied electric field; ρ is the mass density whereas jo = 2γ /(2μ+χ) is
the microinertia (Ahmadi 1976, p 640); μ and χ are the Newtonian shear viscosity coefficient
and the vortex viscosity coefficient, respectively; and α, β and γ are the three spin-gradient
viscosity coefficients. Let us note that v′, χ, α, β and γ are null-valued in a simple Newtonian
fluid.

In the absence of a significant convective or electrophoretic disturbance to the electric
double layers present in the vicinities of the walls y ′ = ±h, the charge density ρ ′

e(r
′) is

described by a Boltzmann distribution, and takes the following form for a symmetric, dilute
and univalent electrolyte (Li 2004):

ρ ′
e(r

′) = −2zoeno sinh[zoeψ
′(r′)/kBT ]. (4)

Here, zo is the absolute value of the ionic valence, ψ ′ is the electric potential, e is the charge
of an electron, no is the number density of ions in the fluid far away from any charged surface,
kB is the Boltzmann constant and T is the temperature. With ε denoting the static permittivity
of the fluid, the charge density and the electric potential are also related by the Gauss law as
follows:

∇′2ψ ′(r′) = (2zoeno/ε) sinh[zoeψ
′(r′)/kBT ]. (5)

The Debye length λD = (zoe)
−1(εkBT /2no)

1/2 is assumed in this paper to be much smaller
than h; i.e., λD � h.

Before proceeding, let us define the non-dimensionalized quantities

r = 1

h
r′, t = U

h
t ′

V = 1

U
V′, v = h

U
v′

ψ = 1

ψo

ψ ′, ρe = h2

εψo

ρ ′
e

Eapp = 1

Eo

E′
app, mpq = h2

γU
m′

pq

σpq = h

(μ + χ)U
σ ′

pq

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

Here m′
pq and σ ′

pq are, respectively, components of the couple stress and the (Cauchy) stress
tensors, where p, q ∈ {1, 2, 3};

U = −εψoEo

μ + χ
(7)

is a characteristic speed (Siddiqui and Lakhtakia 2009); Eo � 0 is a reference value of the
magnitude of the applied electric field to be prescribed later and ψo is called the zeta potential
(Li 2004) which is assumed to be temporally constant and spatially uniform at the walls
y = ±1. With these quantities, equations (1)–(3) and (5), respectively, simplify to

∇ · V(r, t) = 0, (8)

−∇ × [∇ × V(r, t)] + k1∇ × v(r, t) + ρe(r)Eapp(t) = Re

D

Dt
V(r, t), (9)

−∇ × [∇ × v(r, t)] − 2k2v(r, t) + k3∇[∇ · v(r, t)] + k2∇ × V(r, t) = Ro

D

Dt
v(r, t), (10)

∇2ψ(r) = m2
o

αo

sinh[αoψ(r)], (11)
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where

k1 = χ

μ + χ
, k2 = χh2

γ

k3 = α + β + γ

γ
, Re = ρUh

μ + χ

Ro = ρjoUh

γ
, mo = h

λD

αo = zoeψo

kBT

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (12)

Here, the parameter k1 couples the two viscosity coefficients, k2 and k3 are normalized
micropolar parameters, Re may be called the Reynolds number, Ro may be called the
microrotation Reynolds number (Eringen 2001) and αo is the ionic-energy parameter (Burgreen
and Nakache 1964).

We have already assumed that ∂/∂z ≡ 0; now, we ignore the spatial variations along the
x ′-axis and set ∂/∂x ≡ 0 consistently with the assumption that w � h. Furthermore, the
one-dimensional flow is supposed to be laminar and symmetric with respect to the y ′-axis.
Let us therefore designate

u = x̂′ · V, N = ẑ′ · v (13)

for further analysis of non-steady flow in the microchannel. We take the applied electric field
to be

E′
app(t

′) = x̂′Eoξ(t ′ − to), (14)

such that the switching function

ξ(t ′ − to) =
{

1, t ′ = to

0, t ′ �= to.
(15)

Accordingly, equations (8)–(10) reduce to the following system of partial differential
equations:

∂2

∂y2
u(y, t) + k1

∂

∂y
N(y, t) +

d2

dy2
ψ(y)ξ(t ′ − to) = Re

∂

∂t
u(y, t), (16)

∂2

∂y2
N(y, t) − 2k2N(y, t) − k2

∂

∂y
u(y, t) = Ro

∂

∂t
N(y, t). (17)

As the flow is symmetric—i.e., u(y, t) = u(−y, t) and ψ(y) = ψ(−y)—the restrictions

∂

∂y
u(y, t)

∣∣∣∣
y=0

= 0,
d

dy
ψ(y)

∣∣∣∣
y=0

= 0 (18)

must hold for all t > 0. The boundary conditions on u(y, t) and ψ(y) are (Li 2004, p 95)

u(±1, t) = 0, ψ(±1) = 1, t > 0. (19)

In addition, the condition

ψ(0) = 0 (20)

is engendered by the assumption h � λD (Probstein 1989, p 187). Next, the appropriate
initial conditions on u(y, t) and N(y, t) are as follows:

u(y, 0) = 0, N(y, 0) = 0, y ∈ [−1, 1]. (21)

4
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Finally, we impose the boundary conditions

N(±1, t) − βo

∂

∂y
u(y, t)

∣∣∣∣
y=±1

= 0, N(0, t) = 0, t > 0, (22)

where βo ∈ [−1, 0] is some constant. As discussed in the predecessor paper (Siddiqui and
Lakhtakia 2009), there are two major schools of thought on the boundary condition (22)1.
One school ignores microrotation effects near solid walls and sets βo = 0 (Eringen 2001,
Papautsky et al 1999). But the second school holds that βo < 0 because the shear and couple
stresses on the walls must be high in magnitude in comparison to locations elsewhere, as
can be reasoned from the existence of boundary layers (Rees and Bassom 1996, Hegab and
Liu 2004). This argument is held valid when thermal transfer and magnetic effects are to be
accounted for (Hegab and Liu 2004). In the present case, electric double layers are present;
hence, βo < 0 may be reasonable if electro-osmosis occurs. Results are provided in this paper
for non-zero βo.

We have shown in the predecessor paper that the electric potential that solves
equation (11) and satisfies the boundary conditions (18)2, (19)2 and (20) is

ψ(y) = 2

αo

cosh−1

{
1 + o exp[2mo(|y| − 1)]

1 − o exp[2mo(|y| − 1)]

}
, y ∈ [−1, 1], (23)

where

o =
∣∣∣∣cosh(αo/2) − 1

cosh(αo/2) + 1

∣∣∣∣. (24)

The other variables in equations (16) and (17) remain unknown and have to be determined
using a numerical approach.

3. Numerical approach

The interval y ∈ [−1, 1] was divided into 2I segments of size �y = 1/I , and J time steps
of �t = 1/J were used. We adopted the Du Fort–Frankel scheme which is unconditionally
stable as well as accurate to the second order in both space and time (Hoffman 1992, p 683;
Thomas 1995, p 302), so that the differential equations (16) and (17) transformed into systems
of difference equations. The difference equations were solved iteratively by the successive
overrelaxation (SOR) method (Hoffman 1992, p 56). The iterative procedure was repeated
until convergence was obtained according to the following criterions (Hoffman 1992, p 425):

max
i, j

∣∣∣∣∣
u

(m+1)
i,j − u

(m)
i,j

u
(m+1)
i,j

∣∣∣∣∣ < 10−5,
max
i, j

∣∣∣∣∣
N

(m+1)
i,j − N

(m)
i,j

N
(m+1)
i,j

∣∣∣∣∣ < 10−5, (25)

where ui,j ≡ u(i�y, j�t) and Ni,j ≡ N(i�y, j�t), i ∈ [0, I ] and j ∈ [0, J ].

4. Numerical results and discussion

All calculations were made with the following material properties fixed: no = 6.02 ×
1022 m−3, zo = 1, γ = 10−4 kg m s−1, ε = 10εo, εo = 8.854 × 10−12 F m−1, μ = 3 × 10−2

Pa s and ρ = 1200 kg m−3. The temperature was fixed at T = 290 K. Since the Boltzmann
constant kB = 1.38×10−23 J K−1 and the electron charge e = 1.6×10−19 C, the Debye length
λD = 10.72 nm. Consistently with the assumption that h � λD , we chose h ∈ [536, 5360]
nm so that mo ∈ [50, 500]. We used ψo ∈ {−500,−100,−25} × 10−3 V. The parameter
k1 ∈ [0, 0.95] was kept as a variable. The magnitude of the spike of the applied electric field

5
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was fixed at Eo = 104 V m−1. Moreover, �y = 1.25 × 10−3 and �t = 2.5 × 10−8 were used
for calculations.

The dependences of the relevant components of the fluid velocity, microrotation, stress
tensor and couple stress tensor on mo, k1, βo and ψo were investigated. The fluid velocity
and the microrotation have only one non-zero component each: u′(y ′, t ′) and N ′(y ′, t ′),
respectively, where N ′ = ẑ′ · v′. The only non-zero components of the stress tensor and the
couple stress tensor are (Eringen 2001)

σ ′
12(y

′, t ′) = μ
∂

∂y ′ u
′(y ′, t ′) − χN ′(y ′, t ′)

σ ′
21(y

′, t ′) = (μ + χ)
∂

∂y ′ u
′(y ′, t ′) + χN ′(y ′, t ′)

m′
23(y

′, t ′) = γ
∂

∂y ′ N
′(y ′, t ′)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (26)

On normalizing the foregoing three quantities, equations (26) take the following form:

σ12(y, t) = (1 − k1)
∂

∂y
u(y, t) − k1N(y, t)

σ21(y, t) = ∂

∂y
u(y, t) + k1N(y, t)

m23(y, t) = ∂

∂y
N(y, t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (27)

Whereas σ12 = σ21 for a simple Newtonian fluid, let us note that the equality does not hold
for a micropolar fluid.

4.1. Fluid velocity

We examined the fluid speed u′(y ′, t ′) for different values of k1, βo and ψo, using the numerical
approach described in section 3. Some representative results are provided in tables 1 and 2
and figures 1–3 for ψo ∈ {−500,−100,−25} × 10−3 V, mo = 50,3 k1 ∈ {0, 0.5, 0.95} and
βo ∈ {−1,−0.2}. The electric-field impulse is applied at time to = 1 × 10−3 s.

Figures 1–3 show that the application of the electric-field impulse leads to a surge in the
fluid speed, which then decays back to the pre-impulse value. The speed-decay time t ′d is
defined by the relation u′(0, to + t ′d) = u′(0, to)/2.71828. Tables 1 and 2 show the speed-decay
time for different values of flow and geometric parameters. According to these tables, t ′d

• decreases as k1 increases for all βo and ψo;
• increases with |ψo| for all k1 and βo;
• increases as |βo| increases for all k1 and ψo.

Furthermore, t ′d for a simple Newtonian fluid (k1 = 0) is higher than that for a micropolar
fluid for all ψo.

We found that the fluid speed is maximum midchannel (i.e., at y ′ = 0) for non-steady
flow, as also steady flow (Siddiqui & Lakhtakia 2009), due to the no-slip boundary condition
(19)1. Accordingly, attention was focused on the variation of u′(0, t ′) with time t ′, with
some representative results presented in figures 1–3. These figures indicate that the surge in
u′(0, t ′) is instantaneous, upon the application of the electric-field impulse. Furthermore, this

3 A simple increase in the value of mo does not change the basic characteristics of all dependences presented in
section 4 except that the maximum magnitudes increase. This observation was earlier made for steady flows also
(Siddiqui and Lakhtakia (2009).

6
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Table 1. Values of u′
m and t ′d for different values of k1 and ψo, when mo = 50 and βo = −0.2.

k1 ψo (V) ×10−3 u′
m (m s−1) ×10−7 t ′

d (s) ×10−9

0 −25 7.302 14.924
0.25 −25 12.954 13.945
0.4 −25 14.064 13.481
0.41 −25 14.155 13.452
0.42 −25 14.102 13.427
0.95 −25 2.532 12.649

0 −100 25.379 32.597
0.25 −100 46.441 19.533
0.48 −100 54.756 15.557
0.49 −100 54.801 15.439
0.5 −100 54.732 15.313
0.95 −100 10.146 12.668

0 −500 49.449 154.390
0.25 −500 88.262 111.274
0.64 −500 211.877 27.221
0.65 −500 213.077 25.219
0.66 −500 212.116 23.251
0.95 −500 50.773 12.773

Table 2. Same as table 1 except that βo = −1.

k1 ψo (V) ×10−3 u′
m (m s−1) ×10−7 t ′

d (s) ×10−9

0.25 −25 52.135 14.217
0.4 −25 78.990 13.810
0.41 −25 79.325 13.783
0.42 −25 80.833 13.759
0.95 −25 103.538 12.697
0.25 −100 179.345 24.109
0.48 −100 343.525 17.321
0.49 −100 351.442 17.206
0.5 −100 362.233 17.075
0.95 −100 418.341 12.870
0.25 −500 352.339 126.195
0.5 −500 952.874 71.771
0.64 −500 1548.562 50.677
0.65 −500 1599.576 48.858
0.66 −500 1656.863 47.237
0.95 −500 2111.223 13.591

maximum value u′
m = u′(0, to) of u′(0, t ′) increases with k1 for all ψo. In addition u′

m also
increases as |ψo| increases for all k1 and βo, which is also clear from the data in tables 1 and
2. The maximum value of u′

m occurs at some k1 �= 0 for all ψo; thus, micropolarity enhances
the maximum fluid speed. The value of k1 which maximizes u′

m increases with |ψo| for all βo.

7
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Figure 1. Variation of u′(0, t ′) (×10−7 m s−1) with t ′ (×10−3 s), when mo = 50, to = 1 × 10−3

s, βo = −0.2, and ψo = −25 × 10−3 V, for (a) k1 = 0, (b) k1 = 0.5, (c) k1 = 0.95.

4.2. Microrotation

The microrotation N ′(y ′, t ′) is a measure of the spinning speed of the rigid/semi-rigid particles
in the fluid about their respective centroids. The chief results pertaining to N ′(y ′, to) and
N ′(h, t ′) are displayed in figures 4 and 5.

Just like the fluid speed in section 4.1, the microrotation also surges instantaneously upon
the application of the electric-field impulse. Figure 4 shows that |N ′(y ′, to)| is maximum at the
walls y ′ = ±h and is null-valued at the centre y ′ = 0 of the microchannel. Both conclusions
are in agreement with conditions (22), and had been obtained for steady flow also (Siddiqui
& Lakhtakia 2009). Moreover, this figure reveals that |N ′(y ′, to)|

• decreases as k1 increases for all βo and ψo;
• decreases as |ψo| increases for all k1 and βo;
• increases as |βo| increases for all k1 and ψo.

Table 3 contains data on τ ′
d , the microrotation-decay time defined by the relation

N ′(h, to + τ ′
d) = N ′(h, to)/2.71828, and N ′

m = |N ′(±h, to)|, the maximum magnitude of
the microrotation in the microchannel. This table indicates that the microrotation-decay time

• decreases as k1 increases for all βo and ψo;
• increases as |ψo| increases for all k1 and βo;
• increases as |βo| increases for all k1 and ψo.

Consequently, we surmise that τ ′
d is proportional to t ′d .
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Figure 2. Same as figure 1, except that ψo = −100 × 10−3 V.

Table 3. Values of N ′
m and τ ′

d for different values of k1, βo and ψo, when mo = 50.

k1 βo ψo (V) ×10−3 N ′
m (s−1) τ ′

d (s) ×10−9

0.25 −0.2 −25 10.938 12.726
0.95 −0.2 −25 0.854 12.643
0.25 −0.2 −100 217.212 12.935
0.95 −0.2 −100 17.135 12.646
0.25 −0.2 −500 309.390 13.080
0.95 −0.2 −500 27.093 12.662
0.25 −1 −25 69.275 12.942
0.95 −1 −25 43.362 12.690
0.25 −1 −100 268.769 13.648
0.95 −1 −100 175.105 12.838
0.25 −1 −500 1188.424 13.837
0.95 −1 −500 882.230 13.457

Table 3 also lets us conclude that the maximum magnitude N ′
m of the microrotation

decreases as k1 increases for all ψo and βo; it also decreases as |ψo| increases for all k1 and
βo. Figure 5 showing the variation of N ′(h, t ′) with t ′ is in agreement with these conclusions.
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Figure 3. Same as figure 1, except that ψo = −500 × 10−3 V.

4.3. Stress tensor

Like N ′(y ′, t ′), the component σ ′
12(y

′, t ′) = −σ ′
12(−y ′, t ′) of the stress tensor is maximum in

magnitude at the two walls but is absent at the centre of the microchannel. In addition, its
temporal profile shows that σ ′

12(y
′, t ′) attains its maximum value at t ′ = to. These results are

exemplified by figures 6 and 7.
The spatial profiles of σ ′

12(y
′, to) in figure 6 reveal that the maximum magnitude

σ ′
12m

= |σ ′
12(±h, to)| of σ ′

12(y
′, to) decreases as k1 increases for low values of k1 for all

low value of |βo|. However, this magnitude increases as k1 increases for higher values of k1

for all low values of |βo|. Moreover, σ ′
12m

increases with |βo| for all k1 and ψo, and it also
intensifies with increasing |ψo| for all k1 and βo. Both of these results are exemplified by
figure 7.

Analogous to the component σ ′
12(y

′, t ′) of the stress tensor, the component σ ′
21(y

′, t ′) is
dominant at the walls of microchannel and also adheres to the spatial symmetry σ ′

21(y
′, t ′) =

−σ ′
21(−y ′, t ′). In addition, the increasing/decreasing trend of σ ′

21(y
′, t ′) is the same as that

of σ ′
12(y

′, t ′) with respect to y ′, t ′, k1, βo and ψo. However, |σ ′
21(y

′, t ′)| exceeds |σ ′
12(y

′, t ′)| at
the walls of the microchannel. We decided not to illustrate these results here.

4.4. Couple stress tensor

The couple stress tensor appears, in addition to the usual (Cauchy) stress tensor, in micropolar
fluids as it is generated by the rotational degrees of freedom of the rigid/semi-rigid particles
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Figure 4. Variation of N ′(y′, to) (s−1) with y′ (×10−7 m) when mo = 50, for k1 = 0.25
(solid curves), k1 = 0.5 (dotted curves), k1 = 0.95 (dashed curves). (a)–(c) βo = −0.2 and
(d)–(f ) βo = −1. (a), (d) ψo = −25 × 10−3 V, (b), (e) ψo = −100 × 10−3 V and (c),
(f ) ψo = −500 × 10−3 V.
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Figure 5. Variation of N ′(h, t ′) (s−1) with t ′ (×10−3 s), when k1 = 0.25 and mo = 50. (a)–(c)
βo = −0.2 and (d)–(f ) βo = −1. (a), (d) ψo = −25 × 10−3 V, (b), (e) ψo = −100 × 10−3 V
and (c), (f ) ψo = −500 × 10−3 V.

therein. Just like all other quantities examined thus far in this section, the only non-zero
component of the couple stress tensor also surges instantaneously in response to the application
of the electric-field impulse. Its temporal profiles show that it achieves its maximum values at
t ′ = to.
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Figure 6. Variation of σ ′
12(y

′, to) (N m−1) with y′ (×10−7 m) when mo = 50, for k1 = 0
(solid curves), k1 = 0.5 (dotted curves), k1 = 0.95 (dashed curves). (a)–(c) βo = −0.2 and
(d)–(f ) βo = −1. (a), (d) ψo = −25 × 10−3 V, (b), (e) ψo = −100 × 10−3 V and (c),
(f ) ψo = −500 × 10−3 V.
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Figure 7. Variation of σ ′
12(−h, t ′) (N m−1) with t ′ (×10−3 s), when k1 = 0.25 and mo = 50.

(a)–(c) βo = −0.2 and (d)–(f ) βo = −1. (a), (d) ψo = −25 × 10−3 V, (b), (e) ψo = −100 ×
10−3 V and (c), (f ) ψo = −500 × 10−3 V.

Figure 8 represents the variation of m′
23(y

′, to) with y ′. It shows that m′
23(y

′, to) is
independent of y ′ for |ψo| < 100 × 10−3 V for all k1 and βo, but not when |ψo| � 100 ×
10−3 V. Furthermore, m′

23(y
′, to)

• increases as |ψo| increases for all k1 and βo;
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Figure 8. Variation of m′
23(y

′, to) (m−1 s−1) with y′ (×10−7 m) when mo = 50, for k1 = 0.25
(solid curves), k1 = 0.5 (dotted curves), k1 = 0.95 (dashed curves). (a)–(c) βo = −0.2 and
(d)–(f ) βo = −1. (a), (d) ψo = −25 × 10−3 V, (b), (e) ψo = −100 × 10−3 V and (c),
(f ) ψo = −500 × 10−3 V.

• increases as |βo| increases for all k1 and ψo;
• decreases as k1 increases for all βo and ψo.

Of course, m′
23(y

′, t ′) ≡ 0 when micropolarity is absent (k1 = 0).

5. Concluding remarks

We formulated the initial-boundary-value problem of non-steady electro-osmotic flow of a
micropolar fluid in a rectangular microchannel, provided that the Debye length is no more
than 5% of the height of the microchannel and the length of the microchannel is much larger
than its height. The governing differential equations were solved numerically using the Du
Fort–Frankel scheme, when a spatially uniform electric field is applied as an impulse of finite
magnitude. The effect of this impulse is instantaneous in the temporal profiles of the fluid
speed, microrotation, stress and couple stress—for micropolar as well as simple Newtonian
fluids.

Numerical results showed that the fluid speed depends significantly on the micropolar
nature of the fluid as expressed through a boundary parameter (βo) that mediates the velocity
gradient and the microrotation at the walls of the microchannel and a viscosity coupling
parameter (k1) relating the Newtonian shear viscosity coefficient and the (micropolar) vortex
viscosity coefficient—in agreement with the results for steady flow examined in Siddiqui and
Lakhtakia (2009). Furthermore, the decay time of the fluid speed intensifies with the increase
in the magnitudes of |βo| and the zeta potential |ψo|. Notably however, it decreases if the
micropolarity (i.e., k1 �= 0) is increased. Furthermore, the decay time of fluid speed for a
micropolar fluid is less than for a comparable simple Newtonian fluid.
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The fluid speed is dominant midchannel but null-valued at the walls, this trend being
just the opposite for the microrotation. Moreover, the maximum magnitude of microrotation
intensifies with increasing magnitude of the zeta potential, but it decreases as the viscosity
coupling parameter increases. The microrotation-decay time appears to be proportional to the
speed-decay time.

Although the stress tensor is dependent on both fluid speed and microrotation, the effect
of microrotation is more dominant than that of the fluid speed. An increase in the magnitude
of either the zeta potential or the boundary parameter enhances the magnitude of the stress
components at the walls of the microchannel. A threshold effect is evident in the spatial profile
of the couple stress tensor: it is spatially uniform for |ψo| less than a certain value (100 mV
for the chosen parameters) but varies spatially for a zeta potential of higher magnitude.

Given that the effect of the application of the electric-field impulse is instantaneous in the
temporal profiles of the fluid speed, microrotation, stress and couple stress, we expect similar
trends even when the applied electric field varies over some finite interval of time. Therefore,
analysis for non-steady flows can be adequately substituted by the simpler analysis for steady
flow.
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